天天中文网

手机浏览器扫描二维码访问

对火星轨道变化问题的最后解释(第1页)

作者君在作品相关中其实已经解释过这个问题。

不过仍然有人质疑。

那么作者君在此列出相关参考文献中的一篇开源论文。

以下是文章内容:

LrationsandstabilityofplaaryorbitsinourSolarsystem

Abstract

&theresults-termegrationsofplaaryorbitalmotionsover109-yrtime-spansingalls。Aquispeericaldatasholaioinoursimpledynamistobequitestableevehisverylongtime-spathelowest-frequencyossusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialplaiohatofMercury。ThebehaviouroftheetrierrationsisqualitativelysimilartotheresultsfromJacquesLaskarssecularperturbati。emax~yr)。However,therearesecreasesofetriinanyorbitalelemes,whichmayberevealedbystillloermegrations。erformedacouplerationsingmotioerfiveplahedurationof±5×1010yr。Theresultihethreemajorresoheosystemhavebeenmaihe1011-yrtime-span。

1Introdu

&ionoftheproblem

&ioyofourSolarsystemhasbeeedoverseveralhundredyears,siheeraofheproblemhasattrayfamousmathematisovertheyearsandhasplayedatralroleiofnon-lineardynamidchaostheory。However,wedohaveadefihequestioherourSolarsystemisstableornot。Thisispartlyaresultofthefactthatthedefinitioability’isvaguewhenitisusediotheproblemofplaionintheSolarsystem。Actuallyitisogiveaclear,rigorousandphysiiioyofourSolarsystem。

Amoionsofstability,herettheHilldefinition(Gladman1993):actuallythisisionofstability,butofinstability。Wedefiemasbeingunstablewheeroewhereiem,startingfromaitialfiguratioherill&Boss1996;Ito&Tanikawa1999)。AsystemisdefinedasexperiengaterwhentwobodiesapproaotherwithihelargerHillradius。Otherwisethesystemisdefiable。HenceforwardwestatethatourplaemisdynamicallystableiferhappensduringtheageofourSolarsystem,about±5Gyr。Ihisdefinitionmaybereplaeinwhioybetweeherofapairofplaakesplace。Thisisbecauseweknowfromexperieanisverylikelytoleadtoaplaaryandprotoplaems(Yoshinaga,Kokubo&Makino1999)。Ofcoursethisstatementplyappliedtosystemswithstableorbitalresonancessuchastheosystem。

1。2Previousstudiesandaimsofthisresearch

Inadditiontothevagueheceptofstability,theplasinourSolarsystemshoiian&Wisdom1988,1992)。Thecauseofthischaoticbehaviourisnowpartlyuoodasbeiofresonance(Murray&Holman1999;Leklin&Holman2001)。However,itwouldrequireiingoveranensembleofplaemsingallsforaperiseveral10Gyrthlyuheloioaryorbits,siiamicalsystemsarecharacterizedbytheirstrongdepeials。

Fromthatpointofview,manyofthepreviouslong-termegratioheouterfiveplas(Sussman&Wisdom1988;Kinoshita&Nakai1996)。ThisisbecausetheorbitalperiodsoftheouterplasaresomugerthaheinnerfourplaitismucheasiertofollowthesystemfiveiopreseegrationspublishedinjourhoseofDun&Lissauer(1998)。Althoughtheirmaiheeffeain-sequenasslossoyofplaaryorbits,theyperformedmaiupto~1011yroftheorbitalmotionsofthefourjoviaheinitialorbitalelementsandmassesofplahesameasthoseofourSolarsysteminDun&Lissauerspaper,buttheydecreasethemassoftheSungraduallyintheirnumericalexperiments。Thisisbecausetheysidertheeffeain-sequenasslossinthepaper。tly,theyfoundthatthee-scaleofplaaryorbits,whibeatypidicatoroftheinstabilitytime-scale,isquiteseherateofmassdecreaseoftheSuhemassoftheSuspresehejoviasremainstableover1010yr,er。Dun&Lissaueralsoperformedfoursimilarexperimealmotios(Veune),whichcoveraspanof~109yr。Theirexperimentsosarepreheseemsthattheterrestrialplasalsoremaiheiionperiod,maintainingalmulaross。

Oherhand,inhisaccuratesemi-analyticalsecularperturbationtheory(Laskar1988),Laskarfindsthatlargeandirregularvariationsappeariiesandinsoftheterrestrialplas,espeerdMarsonatime-scaleofseveral109yr(Laskar1996)。TheresultsofLaskarssecularperturbationtheoryshouldbeedaedbyfullyegrations。

Inthispaperwepresentprelimisofsixlong-termegrationsoaryorbits,gaspanofseveral109yr,andoftwratiaspanof±5×1010yr。Thetotalelapsedtimeforalliiohan5yr,usingseveraldedicatedPdworkstatiohefuals-termiionsisthatSolarsystemplaioobestableiheHillstabilitymentioleastoveratime-spanof±4Gyr。Actually,iegratioemwasfarmorestablethanwhatisdefiability:notonlydiderhappenduriioalsoalltheplaaryorbitalelementshavebeenedinahintimeandfrequenain,thoughplaioicethepurposeofthispaperistoexhibitaheresults-termegratioypicalexamplefiguresasevideheveryloabilityofSolarsystemplaion。Forreaderswhohavemorespeddeeperisinournumericalresults,aredawebpage(access),raworbitalelements,theirlow-passfilteredresults,variationofDelausandangularmome,asofoursimpletime–frequenalysisonallrations。

&ion2webrieflyexplainourdynamiericalmethodandinitialsusediioiooadesofthequickresultsoftheegrati-termstabilityofSolarsystemplaionisapparentbothiarypositionsandorbitalelements。Aroughestimationofnumericalerrorsisalsogiveiooadisoftheloioaryorbitsusingalow-passfilterandincludesadisofangularmome。Iioasetofegratioerfiveplaspans±5×1010yr。Iion6wealsodiscusstheloabilityoftheplaionanditspossiblecause。

&ionoftheegrations

(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

2。3hod

&ilizeased-orderWisdom–Holmaiaiiohod(;amp;amp;Holman1991;Kinoshita,Yoshida&Nakai1991)ecialstart-upproceduretoreducethetrunerrlevariables,‘warmstart’(Saha&Tremaine1992,1994)。

&epsizefortheegrationsis8dthroughoutalliionsofthes(N±1,2,3),whichisabout111oftheorbitalperiodoftheipla(Mercury)。Asforthedeterminationofstepsize,wepartlyfollowthepreviousegrationofallsinSussman&Wisdom(1988,7。2d)andSaha&Tremaine(1994,22532d)。Werouhedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2ioreducetheacofrouheputationprorelationtothis,;amp;amp;Holman(1991)performedegratioerfiveplaaryorbitsusiicmapsizeof400d,110。83oftheorbitalperiodofJupiter。Theirresultseemsth,whichpartlyjustifiesourmethodthestepsize。However,siricityofJupiter(~0。05)ismuchsmallerthanthatofMercury(~0。2),weneedsomeweparetheseiionssimplyiepsizes。

Iioerfiveplas(F±),wefixedthestepsizeat400d。

&Gaussfandgfunthesymplecticmaptogetherwiththethird-orderHalleymethod(Danby1992)asasolverforKeplerequations。Thenumberofmaximumiteratioihodis15,buttheyhemaximuminanyrations。

&ervalofthedataoutputis200000d(~547yr)forthecalsofalls(N±1,2,3),andabout8000000d(~21903yr)fortheiioerfiveplas(F±)。

Althoughnooutputfilteringwasdoheegrationswereinprocess,liedalow-passfiltertotheraworbitaldataafterletedallthecals。SeeSe4。1formoredetail。

&imation

2。4。1Relativeerrorsintyandangularmomentum

Agtoohebasicpropertiesofsympletegrators,whiservethephysiservativequaalorbitalenergyandangularmomentum),-termegratioohavebeehverysmallerrors。Theaveragedrelativeerrorsofty(~10?9)andoftotalangularmomentum(~10?11)haveremainednearlytthroughouttheii。1)。Thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintybyaboutnitudeormore。

&ivenumericalerrorofthetotalangularmomentumδAA0aalenergyδEE0iegrationsN±1,2,3,whereδEaheabsolutegeofthetyandtotalangularmomeively,andE0aheirinitialvalues。ThehorizontalunitisGyr。

&differeingsystems,differeicallibraries,ahardwarearchitecturesresultinumericalerrhthevariationsinround-andnumeris。IntheupperpanelofFig。1,weizethissituationintheseumericalerrorialangularmomentum,whichshorouslypreserveduptomae-εpre。

2。4。2Erroriarylongitudes

&hesymplecticmapspreservetyandtotalangularmomentumofN-bodydynamicalsystemsilywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaeritegrations,especiallyasameasureofthepositionalerrorofplaheerroriaryloimatethenumericalerroriarylongitudes,weperformedthefollowingprocedures。Weparedtheresultofourmaiegrationswithsometestiions,whimuchshorterperiodsbutwithmuchhigheraccurathemaiions。Forthispurpose,weperformedamuchmrationsizeof0。125d(164ofthemaiions)spanning3×105yr,startingwiththesameinitialsasiegration。Wesiderthatthistestiioha‘pseudo-true’solutioaryorbitalevolutio,weparethetestiioegration,N?1。Fortheperiodof3×105yr,weseeadifferenaheEarthbetweeegrationsof~0。52°(iheion)。Thisdiffererapolatedtothevalue~8700°,about25rotatioer5Gyr,siheerritudesincreaseslihtimeiicmap。Similarly,thelongitudeerrorofPlutobeestimatedas~12°。ThisvalueforPlutoismuchbetterthainKinoshita&Nakai(1996)wherethediffereedas~60°。

3Numericalresults–I。Glaa

Iionwebrieflyreviewtheloabilityofplaaryorbitalmhsomesnapshotsofrawa。Theorbitalmotiosiermstabilityinallofouregrations:nosersbetairofplaookplace。

3。1Geioyofplaaryorbits

First,webrieflylookatthegeneralcharacteroftheloabilityofplaaryorbits。Ouriherefocusespartitheierrestrialplasforwhichtheorbitaltime-scalesaremuchshorterthaheouterfiveplas。AsweseeclearlyfromtheplanarorbitalfigurationsshowninFigs2and3,orbitalpositiorialplalebetweeialandfinalpartofeaumeritegration,whisseveralGyr。Thesolidlihepresentorbitsoftheplawithintheswarmofdotseveninthefinalpartofiions(b)and(d)。Thisihroughouttheeiohealmularvariationsofplaaryorbitalmotionremaihesameastheyareatpresent。

&icalviewofthefouriaryorbits(fromthez-axisdire)attheinitialandfinalpartsoftheiionsN±1。Theaxesuhexy-plaheinvariantplaneofSolarsystemtotalangularmomentum。(a)TheinitialpartofN+1(t=0to0。0547×109yr)。(b)ThefinalpartofN+1(t=4。9339×108to4。9886×109yr)。(itialpartofN?1(t=0to?0。0547×109yr)。(d)ThefinalpartofN?1(t=?3。9180×109to?3。9727×109yr)。Ineael,atotalof23684poiedwithanintervalofabout2190yrover5。47×107yr。SolidlinesineaeldeorbitsofthefourterrestrialplaakenfromDE245)。

热门小说推荐
儒武争锋

儒武争锋

千年前穿越异世,成就一代儒圣,却遭武帝暗算身陨。千年后再世重生,武帝屠灭儒道传承,独尊天下,飞升天外之天。三世轮回,秦枫面对武帝神像,握紧手中剑天外天...

穿越之极限奇兵

穿越之极限奇兵

原国家特种兵马孝全被迫退役后阴差阳错错的成为地下世界极限奇兵战队的一员,在经历了一系列波折后,他拥有了强大的超能力和实体穿越的能力。★马孝全实体穿越的第一站,去了东汉末年(三国),成为了上仙大人,建立了马家。★马孝全实体穿越的第二站,去了明末,成为了锦衣卫执事大人。在离开京城后,他来到了地下世界,帮助黑青国完成了国家统一。★马孝全实体穿越的第三站,去了上个世界八十年代,他见到了自己的爸妈和亲人,彻底了解了地下世界和恶魔之手计划。回到如今,马孝全在经历了朋友去世和一系列动乱后,明白了什么是他想要的,什么是他眷恋的...

女法医的刑侦日记[穿越]

女法医的刑侦日记[穿越]

女法医的刑侦日记穿越由作者十月海创作全本作品该小说情节跌宕起伏扣人心弦是一本难得的情节与文笔俱佳的好书格格党小说免费提供女法医的刑侦日记穿越全文无弹窗的纯文字在线阅读。...

直播手术室

直播手术室

林宇穿上了白大褂,泡千金院长谈红颜知己管小萝莉的同时,他还要登上外科手术台的医学巅峰(QQ群895445539欢迎喜欢医生小说的朋友)...

LOL:主播没落网,只是退网

LOL:主播没落网,只是退网

穿越S6,合同即将到期的替补选手楚歌获得‘玩梗系统’。梗的影响力越大便越强。全球总决赛舞台上。主持人问道关于网络上一直流传着楚歌选手当演员的被抓的言论,你作为当事人是怎么看?求求不要造谣我落网了,我只是退网了!哥们就算要当演员,也只会买自己赢,狠狠的赚刀了!玩梗文轻松向...

都市花缘梦

都市花缘梦

关于都市花缘梦本书讲述了一个现代都市青年朴实而离奇的艳遇!也许他就在您的身边各式各样的美女,风采不同的尤物,眼花缭乱的佳人都要与您发生激烈的碰撞!当您看此书时,您会发现您就是这本书中的主人公!该书最大的特点就是情感真实细腻贴近人心,能够激发起您内心深处的强烈共鸣!!!...